University of Brescia, Italy

Hypertension and diastolic dysfunction

Prof. Enrico Agabiti Rosei

How to assess diastolic dysfunction **Determinants of diastolic dysfunction** Prognostic value of diastolic dysfunction Characteristics of diastolic heart failure Treatment of diastolic dysfunction

Pressure-volume relation

6

Invasive techniques

	Limits of normal values
τ	> 48 ms
-dP/dt	< 1100 mmHg . s ⁻¹
PFR,	< 160ml . s ^{-1.} m ⁻²
istantaneous filling rate	
time to peak filling	
LV EDP	< 16 mmHg
PWCP	< 12 mmHg
Constant of chamber stiffness, b	> 0.27
Myocardial stress-strain relation, b1	> 16
	 τ -dP/dt PFR, istantaneous filling rate time to peak filling LV EDP PWCP Constant of chamber stiffness, b Myocardial stress-strain relation, b1

Non - invasive techniques

radionuclide ventriculography

Diastolic filling abnormalities

quantitative echocardiography

- M-mode LV and LA echo (atrial filling fraction)
- Transmitral flow E and A vel
- E deceleration
- IVRT
- Pulmonary flow velocities

Doppler color flow M-mode

• Flow-propagation velocities

- Doppler tissue imaging

• Myocardial velocities

Diastolic filling by Doppler echocardiography

How to assess diastolic dysfunction **Determinants of diastolic dysfunction** Prognostic value of diastolic dysfunction Characteristics of diastolic heart failure

Treatment of diastolic dysfunction

Diastolic dysfunction

LV relaxation abnormalities

Hypertension Ischemia Hypertrophy Cardiomyopathies High output states Overload Aging Altered passive elastic properties

Hypertension Hypertrophy Aging Altered collagen composition **Diabetes mellitus** Fibrosis Infiltrative myocardial disease Storage myocardial disease Endomyocardial disease Pericardial disease

The Strong Heart Study

Diastolic filling parameters adjusted for age, HR, LV mass, MFS

	No HT or DM n 730 age 58 yrs	HT n 394 age 61 yrs	DM n 616 age 58 yrs	HT & DM n 671 age 61 yrs
E/A ratio	0.89 <u>+</u> 0.008*#	0.83 <u>+</u> 0.011§	0.83 <u>+</u> 0.009 §	0.79 <u>+</u> 0.009 #*§
E dec cm/sec	197 <u>+</u> 2.5 *#	203 <u>+</u> 3 §*	202 <u>+</u> 3 §#	212 <u>+</u> 3 #*§

Vs DM, § vs no hri-Divi, # vs Hri

Diastolic dysfunction can be found in 25% of asymptomatic hypertensives without LV hypertrophy, but in 90% of those having LV hypertrophy

JACC ZUU

Doppler filling in young normotensive subjects with and without family history of hypertension

Muiesan et al, Clin Exper Hypertens 1996

LV filling parameters and midwall systolic performance in a general population (Vobarno study) according to aldosterone synthase polymorphism

2

Med Int Univ Brescia

Cardiac tissue characterization in hypertensive heart disease

Acoustic quantification of the backscatter signal, i.e. the ultrasound signals that originate from the myocardial tissue and back scatter towards the transducer
The scattering power is related to the interaction between the ultrasound waves and the density and /or elasticity dys-homogeneity of the tissue

📥 ed Int Univ Brescia

Med Int Univ Brescia

How to assess diastolic dysfunction Determinants of diastolic dysfunction Prognostic value of diastolic dysfunction Characteristics of diastolic heart failure Treatment of diastolic dysfunction

Prognostic significance of diastolic filling abnormalities

Aurigemma et al 2001

2671 men and women participating in to the Cardiovascular Health Study, mean follow up 5.2 yrs, RR for incident CHF, adj for CV risk factors, 3.5 (95% CI,1.8-6.8) in patients with E/A > 1.5 and 1.88 (95% CI, 1.33-2.68) in patients with E/A < 0.7

Bella et al 2002

3008 American Indians (Strong Heart Study), mean follow up 3 yrs, RR cardiac death with E/A > 1.5 = 2.8 (95% CI, 1.19-6.75, p<0.05) RR cardiac death with E/A < 0.6 = 1.18 (95% CI, 0.7-2.1, p=0.31)

Schillaci et al 2002

1839 Caucasian hypertensives (PIUMA Study), mean follow up 4.4 yrs, OR adj for cardiovascular non fatal events 1.57 (95% CI,1.11-2.18,p<0.01) in patients with E/A < median value adjusted for age and heart rate

Redfield et al, JAMA 2003

269 uncomplicated patients with essential hypertension with acceptable M-mode and doppler echocardiophy, underwent the follow-up visit, according to a prospective design, after a mean period of 6 years (range 2-15 years).

159 M, 110 F; age range 18-71 years

	Age yrs	M/F	Follow- up yrs	PAS/PAD mmHg	HR b/min	LVMI g/m ^{2.7}	Midwal I FS %	E/A ratio
Normal diastolic filling n=204	55 ± 6	114/90	4.3 ± 2	152 ± 14 95 ± 9	70 ± 12	48 ± 14	17.1± 3.3	0.96 ± 0.17
Abnormal diastolic filling n=65	58 ± 5	45/20	4.6 ± 2	157 ± 15 97 ± 9	73 ± 12	48 ± 14	16.7 ± 3.5	0.66 ± 0.20

Med Int Univ Brescia

Med Int Univ Brescia

How to assess diastolic dysfunction Determinants of diastolic dysfunction Prognostic value of diastolic dysfunction Characteristics of diastolic heart failure Treatment of diastolic dysfunction

Normal exercise tolerance

Diastolic abnormalities

Reduced exercise tolerance

Diastolic dysfunction

Reduced exercise tolerance and signs of CHF

Diastolic Heart Failure

Diastolic filling and exercise capacity (oxygen consumption at peak exercise)

Variable	Beta	Т	Р
Age (years)	-0.31	-2.90	0.060
Midwall shortening	0.16	1.55	0.129
Exercise change in isovolumic relaxation time (ms)	0.31	2.51	0.016
Peak heart rate (bpm)	0.24	2.44	0.018
Male gender	0.48	4.58	0.001
Resting E/A ratio	0.23	2.31	0.025

E/A, transmitral early/atrial filling velocity ratio.

Gerdts et al, Journal of Hypertension 2002; 20: 1223-1229

European Study Group on Diastolic Heart Failure

- a) Signs or symptoms of CHF: exertional dyspnea and \downarrow peak O₂ consumption
- b) Normal or only mildly abnormal LV systolic function
- c) Abnormal LV relaxation, filling, diastolic distensibility and diastolic stiffness

European Working Group Report Eur Heart J, 1998

Diastolic heart failure: 30% of all cases of congestive heart failure Mortality 8% per year vs. 19% of systolic heart failure.

Treatment of diastolic dysfunction

ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult

"....In the absence of controlled clinical trials the management of patients with diastolic dysfunction is based on the control of physiological factors (blood pressure, heart rate, blood volume and myocardial ischemia)....."

Hunt et al. ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult. JACC 2001; 38: 2101

Change in Diastolic Left Ventricular Filling After One Year of Antihypertensive Treatment LIFE Study

	Total (n=726)		LV Mass Decrease (n=560)		No LV Mass Decrease (n=166)		Difference in ∆ Between LV Mass Decrease or No Decrease	
	Baseline	Year 1	Baseline	Year 1	Baseline	Year 1	Р	
Systolic blood pressure, mm Hg	174±20	151±19*	174±20	150±19*	174±22	153±21*	NS	
Diastolic blood pressure, mm Hg	95±11	84±11*	95±12	84±11*	95 ± 11	85±10*	NS	
Body mass index, kg/m ²	27.4±4.5	27.5±4.6†	$27.4\!\pm\!4.5$	27.4±4.6	$26.8{\pm}3.9$	27.3±4.4*	< 0.05	
LV mass, g	$234\!\pm\!56$	$207\pm51*$	239±57	$200{\pm}46^-$	214 ± 51	$233\pm57^-$		
LV mass/body surface area, g/m ²	124 ± 25	109±23*	126±25	105±21*	$114{\pm}25$	124±25*		
LV mass/height ^{2.7} , g/m ^{2.7}	$56.2{\pm}12.7$	49.9±11.6*	$57.4{\pm}12.9$	48.0±10.5*	$51.7\!\pm\!10.9$	56.8±11.7*	•••	
LV internal diameter, cm	$5.29\!\pm\!0.58$	$5.34 \pm 0.56^{*}$	$5.31\!\pm\!0.57$	$5.29 {\pm} 0.56^{\star}$	$5.19{\pm}0.57$	$5.49 {\pm} 0.59^{\star}$	<0.001	
Interventricular septum, cm	1.16±0.15	$1.04 \pm 0.14^*$	1.17±0.15	1.03±0.13*	1.11 ± 0.15	1.10±0.17*	< 0.001	
Posterior wall thickness, cm	$1.07\!\pm\!0.13$	$0.96 \pm 0.11^{*}$	$1.08{\pm}0.13$	0.96±0.11*	$1.03\!\pm\!0.12$	$1.02{\pm}0.12{}^{\star}$	< 0.001	
Relative wall thickness in end-diastole	$0.41 \!\pm\! 0.067$	$0.37 \pm 0.054^{\star}$	$0.41 \!\pm\! 0.07$	$0.36 {\pm} 0.05^{\star}$	0.40 ± 0.06	$0.38 {\pm} 0.06^{\star}$	< 0.001	
Relative wall thickness in end-systole	0.93 ± 0.19	0.85±0.16*	0.93 ± 0.19	0.85±0.16*	$0.91\!\pm\!0.18$	$0.83 \pm 0.17^{\star}$	NS	
Left atrial diameter, cm	$3.93\!\pm\!0.02$	$3.81 \pm 0.02^{\star}$	$3.96\!\pm\!0.55$	$3.80 {\pm} 0.55^{\star}$	$3.85\!\pm\!0.59$	$3.86\!\pm\!0.60$	< 0.001	
Isovolumic relaxation time, ms	115±25	105±22*	116±24	104±21*	115±25	110±24	< 0.05	
Mitral valve E/A-ratio	$0.85 {\pm} 0.34$	$0.93 \pm 0.33^{*}$	0.83 ± 0.29	$0.92 \pm 0.32^{*}$	0.91 ± 0.47	$0.95{\pm}0.34$	NS	
Mitral valve deceleration time, ms	217±66	$231\pm68*$	216±63	231±68*	228±74	233±67	NS	
Atrial filling fraction	0.42 ± 0.10	0.38±0.11*	0.43±0.10	0.39±0.10*	0.42±0.10	0.38±0.09*	NS	

*P<0.001, †P<0.05 between year 1 and baseline value.

26

Circulation. 2002;105:1071-1076

Effects of antihypertensive treatment on myocardial fibrosis

27

Conclusions

In hypertensive patients abnormalities in both myocardial relaxation and passive filling may be detected.

Several techniques have been used for the assessment of LV diastolic function. Doppler echocardiography is one of the most widely used

Diastolic dysfunction may predict cardiovascular fatal and non fatal events, independently from other RF

Treatment of diastolic dysfunction should be aimed to control physiological factors, favouring the regression of LVH and possibly reducing fibrosis.

